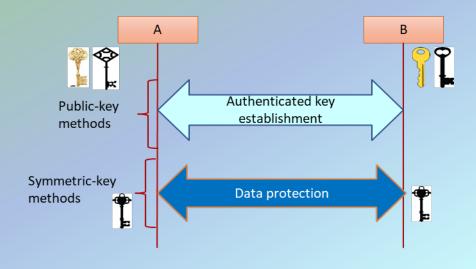
Cornerstone of Cybersecurity in Quantum Era – Post-Quantum Cryptography


Lily Chen

Computer Security Division, Information Technology Lab National Institute of Standards and Technology (NIST)

Cryptography – The Cornerstone of Cybersecurity

- Protect information transmitted over the links and stored in the devices
- Prevent from malware and malicious software attacks

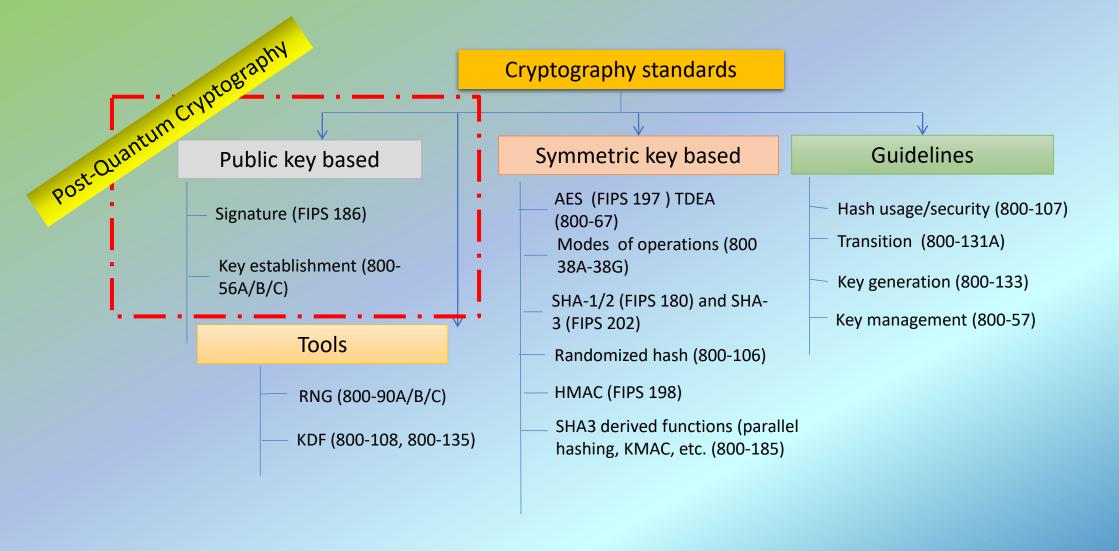
- Public-key cryptography has been used to establish a secure and protected link
- Symmetric-key algorithms are used to protect data

NIST Cryptographic Standards – A Glance

- NIST developed the first encryption standards in 1970s
 - Data Encryption Standard (DES), published
 1977 as Federal Information Processing
 Standard (FIPS) 46
- Over 40 years, NIST continues to evolve its cryptographic standards
 - Enable to respond the growing application demand
 - Enhance security strength to against more sophisticated attacks

Nearly all commercial laptops, cellphones, Internet routes, VPN servers, and ATMs use NIST Cryptography

Quantum Impact to Cybersecurity


- The security of public-key cryptography is based on hard problem assumptions, e.g., integer factorization for RSA
- Quantum computing changed what we have believed about the hardness
 - By Shor's algorithm, factorization problem can be solved by quantum computers in polynomial time
- Quantum computing also impacted security strength of symmetric key based cryptography algorithms – manageable by increasing key size

How to Deal with Quantum Attacks?

- Need to find cryptographic algorithms which are secure against attacks by both classical and quantum computers
 - The algorithms must be based on hard problems which are hard for both classical and quantum computers
- In other words, we need quantum resistant cryptography, named by the researchers as post-quantum cryptography (PQC)
- Clarification
 - Post-quantum cryptographic algorithms are supposed to be implemented in "classical" computers in the same way as RSA, DH, and ECDSA
 - It is different from Quantum Key Distribution (QKD), which relies on quantum mechanics to distribute keys

NIST PQC Standards - Scope

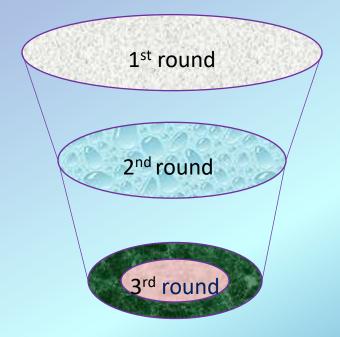
NIST PQC Standards – Milestones and Timeline

2016 Criteria and requirements and call for proposals

2017 Received 82 submissions and announced 69 1st round candidates

2018 The 1st NIST PQC standardization Conference

2019

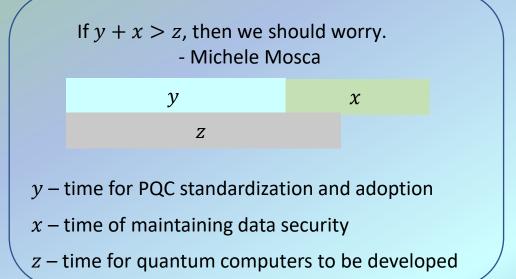

Announced 26 2nd round candidates

The 2nd NIST PQC Standardization Conference

2020 Announced 3rd round 7 finalists and 8 alternate candidate

2021

The 3rd NIST PQC Standardization Conference



2022-2023 Release draft standards and call for public comments

2024 Publish PQC Standards

Cybersecurity in Quantum Era

- Quantum computers, once in a full scale, will crash cryptographic schemes used today, reveal yesterday's secret, and attack tomorrow's transaction
 - PQC is the cornerstone of cybersecurity in quantum time
- PQC standardization and migration are in a pipeline
 - Standardization: NIST PQC standardization process www.nist.gov/pqcrypto
 - Migration and adoption: The National Cybersecurity Center of Excellence (NCCoE) has a project for Migration to PQC to support a head start on executing migration roadmap in collaboration with industry partners

Thanks

- Check out www.nist.gov/pqcrypto
- Sign up for the pqc-forum for announcements & discussion
- Contact us at: pqc-comments@nist.gov